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Uniform Approximation of Nonnegative Continuous
Linear Functionals1

M. WAYNE WILSON

IBM T. J. Watson Research Center, Yorktown Heights, New York 10598

Rogosinski has developed a theory for nonnegative linear functionals in
finite dimensional real spaces. Later he extended this theory to the infinite
dimensional case via weak topologies. In this paper, we extend the theory to
complex valued functions on compact sets, and to a more restrictive class of
infinite dimensional spaces, utilizing only norm topologies. Although more
restrictive than that of Rogosinski, this theory is more amenable to
numerical analysis applications.

The key theorem, Theorem 2.2, gives some sufficient conditions for uniform
approximation of a nonnegative linear functional by finite nonnegative
combinations of function evaluations. The third section gives some finite
dimensional applications.

1. INTRODUCTION

Let T be an arbitrary set, and Coo(T) a linear space of (real or complex
valued) functions defined on T. Let the convex cone P be defined by

P -= {IE Coo(T) IRe{f(t)} > 0, t E T}.

A linear functional L on Coo(T) is said to be nonnegative if Re{L(f)} > 0,
\I fEP.

For any t E T, thepointfunctionalLt at t, defined by Lt(f) = J(t), is clearly
a nonnegative linear functional, so that the hull cone of the set F=. {Ltlt E T}
ofpoint functionals, is clearly contained in the cone ofnonnegative functionals.
The precise relationship between these two cones is of interest in numerical
analysis, since it tells us when a particular nonnegative linear functional can be
approximated by nonnegative linear combinations of function evaluations.

In [6], Rogosinski summarizes results known for real, finite dimensional
Coo(T), giving conditions for these cones to be identical. In [7J, he discusses
the infinite dimensional real case, using weak topologies on the algebraic dual
of Coo(T). Here, we shall restrict ourselves to reflexive Banach spaces, utiliZing
only norm topologies and continuous linear functionals. We state, however,

1 This work was done at Brown University under Office of Naval Research Contract
Nonr-562(36). The author is presently at IBM Research, Yorktown Heights, New York.
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results for both the real and the complex cases. Further, we do not require
the concept of moment cone, since we are not concerned explicitly with
moment problems, another area of application for this type of theory.

Our approach leads to the following theorems, useful in numerical analysis.

THEOREM 2.2. Let C",(T) be a reflexive Banach space, in whichpointfunctionals
are continuous. Let M be a nonnegative linear functional. Then, V € > 0, there
exist points t1, t2, ... , tN in T, and positive scalars i\1' i\2"'" i\N' such that

THEOREM 3.1. Let Cn(T) be the span of n continuous, linearly independent
functions, defined on a compact set T. We assume that 3 f E Cn(T) such that
f(t) > °on T. If M is a nonnegative linear functional, then there exist points
tl> t2, .. ·, tN, and positive scalars i\1' i\2'00" i\N' such that

V fE CiT),

where N.;;; n or N .;;; 2n, depending on whether the functions are real or complex
valued.

This last theorem is known in the real case, and appears explicitly in
Rogosinski [6] and some of his earlier papers, and implicitly in Tchakaloff [8],
who applied it to quadratures, and pointed out its usefulness in numerical
analysis. In Section 2, we characterize the two cones mentioned, prove
Theorem 2.2, and show an application of the theorem. In Section 3, we prove
Theorem 3.1, and indicate some finite dimensional applications.

We require a few definitions, and some notation. Let X be a Banach space.
By K(S), S a given set, we mean the hull cone of S, the smallest convex cone
(with °as vertex) containing S. Analogous with convex hulls, we know that
K(S) is the set of all finite nonnegative combinations of elements of S. (See
Wilansky [9], page 32.)

For a given cone K, we define the dual or polar cone as

KEll=:={LEX*IRe{L(x)}?O, V xEK},

where X* is the conjugate or normed dual of X. Clearly, KEll is a closed convex
cone. Further, if we define the dual or polar cone of a set S,

SEll =:= {L E X* jRe{L(x)} > 0, V XES},

then SEll is also a closed convex cone. It is easily shown that SEll = K(S)Ell.
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Finally, we require the following separation theorem given in Wilansky [9].

THEOREM 1.1. Let X be a locally convex linear space, A a convex set, Xo rf= A
a point in X. Then Xo and A can be strictly separated. That is, 3 x' E X*, such
that

Rex'(xo) > sup {Re x'(x) jx E A}.

2. NONNEGATIVE FUNCTIONALS AND REFLEXIVE SPACES

Recall that for a given set T, C",(T) is a Banach space of real or complex
valued functions defined on T, and P is the cone of nonnegative functions.
Clearly, pe, the dual of P, is the cone of continuous nonnegative linear
functionals. We shall assume that the set F of an point functionals is contained
in [C",(T)]*. That is, point functionals are continuous. Then, immediately,

K(F) cpe,

and, in fact, K(F) s; pe, since pe is a closed convex cone.

THEOREM 2.1. IfC",(T) is reflexive, then

K(F) =p'ifJ.

Proof We need only show pfB s; K(F); so assume Lo E pe, and Lo rf= K(F).
By Theorem 1.1, there exists Z E [C",(T)]** such that

ReZ(Lo) < inf{ReZ(L)IL E K(F)} = 01:.

Now, 0 E K(F), so 01: < O. Suppose 01: < O. Then, 3 L 1 E K(F) such that
ReZ(La = 01:1> where 0> 01:1 > IX. Since L 1 E K(F), a convex cone, nL j E K(F),
V n = 1,2, .... Thus,

n = 1,2, ... ,

a contradiction for n large enough (since 01: and 01:1 are negative).
Thus,

ReZ(Lo) < 0,
and

ReZ(L) > 0 V L E K(F).

Now, letfE C",(T) correspond to Z in the second dual. Then,

Re{f(t)} = Re{Z(Lt )} > 0,

so that f(t) E P. By assumption, Lo E pe, so Re{LoU)} = Re{Z(Lo)} > 0, a
contradiction. Hence, L o E K(F). Q.E.D.

This allows us to prove the following theorem on uniform approximation.
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THEOREM 2.2. Let C<X,(T) be a reflexive Banach space, in whichpointfunctionals
are continuous. Let M be a nonnegative linear functional. Then, "1 E > 0, there
exist points tl , t2 , ••• , tNin T, and positive scalars A" A2, ••• , AN' such that

Proof ME pI20 = K(F), so, for a given positive E, there is a positive combina·
tion of point functionals,

A; E (0, 00),

Then

!M(f) - it A;/(tl)\ = \(M - It Al Lt.) (1)1 < Ellfll,

such that

"1 f E C~,(T).

Q.E.D.

Note that we have a uniform approximation by a linear combination of
point functionals, with positive coefficients, for both the real and the complex
case.

In the preceding two theorems, the only restrictions we have imposed were
on the norm. We have required a reflexive space, where the point functionals
are continuous. We have made no restriction on T, or on the functions.

We give an example now of an infinite dimensional space to which Theorem
2.2 may be applied. For Coo(T), take the complex Hilbert space LiB) given
in Davis [1], where B is an open connected set in the complex plane. The point
functionals are continuous in this space. Suppose S is a rectifiable arc within
B. The functional

M(f) = Is f(z) ds

is a nonnegative linear functional, and hence, can be uniformly approximated
by nonnegative combinations of function values.

3. FINITE DIMENSIONAL ApPLICATIONS

For cones in finite dimensional spaces, we can show some additional results.
It is well known that if S is any set in n-dimensional real space, K(S) consists
of all nonnegative combinations of at most n elements of F. See Tchakaloff
[8] or Fenchel [3].
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The map T: cn -+ Eln, taking n-dimensional complex space into 2n~

dimensional real space, given by

T«XI + iylo' .. , Xn+ iYn)) = (Xlo' .. , XmYl,' .. , Yn)

is 1-1, onto, and bicontinuous. Further, for a, f3 real,

T(au + f3v) = aT(u) + f3T(v).

Hence, we have immediately,

LEMMA 3.1. Let C be a non-empty set in cn. Then

(i) C is convex iff T(C) is convex,
(ii) T(H(C)) = H(T(C)),

(iii) T(K(C)) = K(T(C)),

where H(C) denotes the convex hull ofa set C.
Thus,for a complex n-dimensionalspace, any element in K(S) can be expressed

as a nonnegative combination ofat most 2n elements ofS. Further, the well-known
corollary of Caratheodory's theorem (stating that the convex hull ofa compact
set is compact), holdsfor n-dimensional complex space, as well asfor n-dimen­
sional real space.

Let rPj(t),. ", <Pit) be defined and linearly independent on T, and denote
their span by CIl(T). Let Pn denote the cone of nonnegative functions. Its
finite dimensionality implies that the space is reflexive, and point functionals
are continuous, so that, by Theorem 2.2, K(F) = ptf!, where F is the set of
point functionals. Further, if ME K(F), then M has the form

N

M = 2: AiLti'
i=1

ti E T,

where N.;;; n or N.;;; 2n, depending on whether the functions are real or
complex valued.

We are concerned with conditions which imply K(F) = ptf!. For this purpose,
we define the projection cone U(C) of a given set C, as the cone

U(C) == {ACjA E [0, <Xl)}.

LEMMA 3.2.

(i) C convex =? U(C) convex.
(ii) Cs;; U(C) s;; K(C).

(iii) C convex =? U(C) = K(C).
(iv) K(C) = K(H(C)) = U(H(C)),

where H(C) is the convex hull ofC.
We omit the proof, as it is quite easy.
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LEMMA 3.3. IfC is a closed bounded set, not containing 0, then U(C) is closed.
Krasnoselskii [5] shows this for real Banach spaces, but the proof carries

over directly to the complex case. The last two lemmas hold for infinite
dimensional spaces, but the application to finite dimensional spaces is par­
ticularly easy. If F is compact, H(F) is compact, and if°rf: H(F), then K(F)
is closed, so that K(F) = PntB.

We shall assume the following generalized Krein condition (Rogosinski
[6]), namely, :3 pet) E Pn such that Re{p(t)}:> oc >°on T. This is no loss in
generality, since we can always append a constant function to the set, if the
condition is not satisfied.

It is well known that ifTis a compact set inE", and @b ...,@"arecontinuous
real functions, then K(F) is closed. We show this for the complex case as well.

LEMMA 3.4. If@l"'" @"are continuous, and if the generalized Krein condition
is satisfied, then, ifT is compact, so is F, and°rf: R(F). Thus, K(F) is a closedset.

Proof Ifwe let pet) E CneT) be represented by

"pet) = :L Ai @i(t),
i~l

and if L is a linear functional,

"L(p) = :L AiL@i,
i~l

then, the imbedding of [C,,(T)]* into E" or C", as the case may be, associates
with each L, the vector (L@l'" .,DP,,). The point functional L t is associated
with (@l(t), ... ,@,,(t)). This is a continuous map of T into E" or C", so the set
of point functionals is compact. Since there is no t* E T such that @i(t*) = 0,
'<:j i, therefore °rf: F. For L E H(F), let

Ai> 0,

Let pet) be a function such that Re{p(t)}:> oc > 0. Then

and Re{L(p)}:> oc > 0. Now, °< IL(p) I ,,;;;; IIL[I' [[pll, so IILII > 0, and L $: 0.
Hence, °rf: H(F). By the remarks above, K(F) is closed. Q.E.D.

THEOREM 3.1. Let C,,(T) be the span of n continuous, linearly independent
functions, defined on a compact set T, and suppose CneT) satisfies the generalized
Ktein condition. Let M be a nonnegative linear functional. Then, K(F) = ptB,
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and there exist points tJ, ... , tN, and positive scalars AJ, ..., AN' such that
N

M(f) = 2 Ai f(ti) 'IffE Cn(T),
i~l

247

where N < n or N < 2n, depending on whether the functions are real or complex
valued.

The reverse implication here is obvious. If such an expansion exists, then
M is a nonnegative linear functional.

Example 3.1. Let epJ, ...,epn be real, continuous, and linearly independent
on T s; Er, T compact, and assume the Krein condition is satisfied. Then, if
w(t) > 0 on T, there exists a quadrature formula

fT w(t)f(t)dt = i~l AJU;),

where Ai > 0, ti E T, exact for allfE Cn(T).

Example 3.2. Let T be a rectifiable arc in E 3
, let CiT) be the span of n

real, continuous, linearly independent functions on T, and assume the Krein
condition is satisfied. Then there exists a quadrature formula for the line
integral,

Ir w(t)f(t)dt = Jl AJ(ti),

where,-\ > 0, and ti E T.

Example 3.3. Let epl(Z), ... , epn(z) be n complex, continuous, linearly in­
dependent functions, defined on a compact disk T in the complex plane.
Assume Cn(T) satisfies the generalized Krein condition. Then, there exist
representations, exact for all/E Cn(T), ofthe form

I
2n

T f(z) dx dy = ;~1 AJ(t;), Iti > 0, ti E T,

Ai> 0, ti E T,

where C is a rectifiable arc in T. However, in general,

Ie f(z)dz

is not a nonnegative linear functional, and so, a corresponding representation
does not exist.

The theory of nonnegative linear functionals is useful in numerical analysis,
particularly from the viewpoint ofexistence offormulas with desired properties.
It has also some quite practical applications, see Davis [2], or Wilson (10).
Further applications wilI be given in later papers.
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